M4P52 Manifolds, 2016
 Problem Sheet 1

1. Let X and Y be n-dimensional topological manifolds. Prove that the disjoint union $X \sqcup Y$ is an n-dimensional topological manifold.
Is $S^{1} \sqcup S^{2}$ a topological manifold?
2. Recall that that the discrete topology on a set X is given by declaring that every 1-point set $\{x\} \subset X$ is open (and hence every subset of X is open). Prove that a topological space X is a topological manifold of dimension zero iff X has the discrete topology.
$\star 3 \star$. Let $X=S^{1}$, and let $\left(U_{1}, f_{1}\right)$ and $\left(U_{2}, f_{2}\right)$ be the two 'stereographic projection' co-ordinate charts described in Example 2.4. Define a new co-ordinate chart $\left(U_{0}, f_{0}\right)$ by

$$
\begin{gathered}
U_{0}=S^{1} \cap\{y<0\}, \quad \tilde{U}_{0}=(-1,1) \subset \mathbb{R} \\
f_{0}: U_{0} \xrightarrow{\sim} \tilde{U}_{0} \\
(x, y) \mapsto x
\end{gathered}
$$

(a) Write down the transition functions $\phi_{10}, \phi_{01}, \phi_{20}$ and ϕ_{02}, including their domains and codomains.
(b) Is $\left(U_{0}, f_{0}\right)$ compatible with the atlas $\left\{\left(U_{1}, f_{1}\right),\left(U_{2}, f_{2}\right)\right\}$?
4. Prove Lemma 2.15.
5. Define an equivalence relation on \mathbb{R}^{2} by

$$
(x, y) \sim\left(x+n,(-1)^{n} y+m\right), \forall n, m \in \mathbb{Z}
$$

(these are the orbits of a group action generated by a vertical translation and a horizontal glide reflection). Let K be the topological space:

$$
K=\mathbb{R}^{2} / \sim
$$

(a) Find a smooth atlas on K. Hint: copy Example 2.12.
(b) What does K look like?
6. Prove Corollary 2.20.
7. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function $f: x \mapsto x^{3}$. Is (\mathbb{R}, f) a co-ordinate chart on \mathbb{R} ? Is it compatible with the standard smooth structure on \mathbb{R} ?
8. Let $q: \mathbb{R}^{2} \rightarrow T^{2}$ be the quotient map from Example 2.12. Let $\tilde{U} \subset \mathbb{R}^{2}$ be an open set such that $\left.q\right|_{\tilde{U}}$ is injective, and let $U=q(\tilde{U})$.
(a) Prove that $\left(\left.q\right|_{\tilde{U}}\right)^{-1}: U \rightarrow \tilde{U}$ is a co-ordinate chart on T^{2}.
(b) Prove that this chart is compatible with the smooth structure from Example 2.12.

M4P52 Manifolds, 2016
 Problem Sheet 2

1. Complete the proof of Proposition 2.26 by proving the two statements asserted in the final sentence.
2. Let X be any manifold, and let x be a point in X. Show that the subset $Z=\{x\}$ is a submanifold of X.
3. Let X be the 2-torus $T^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$. Let $Z \subset X$ be the subset:

$$
Z=\left\{[(x, y)] \in X ; y=\frac{1}{3} \sin (2 \pi x)+m, \text { for some } m \in \mathbb{Z}\right\}
$$

Show that Z is a submanifold of X.
$\star 3 \star$. Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a smooth function, and let

$$
Z=\left\{(x, g(x)) ; x \in \mathbb{R}^{n}\right\} \subset \mathbb{R}^{n+1}
$$

be the graph of g. Prove that Z is a submanifold of \mathbb{R}^{n+1},
(a) without using Proposition 3.16,
(b) using Proposition 3.16.
4. Find a function $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ having a critical value $\alpha \in \mathbb{R}^{k}$ such that the level set $h^{-1}(\alpha) \subset \mathbb{R}^{k}$ is a submanifold of codimension k.
5. Let $Z=h^{-1}(1) \subset \mathbb{R}^{3}$ be the torus from Example 3.22. Following the procedure from that example and Example 3.21, construct a chart on Z containing the point $(3,0,0)$.
6. Show that the group

$$
S L_{2}(\mathbb{R})=\left\{M \in \operatorname{Mat}_{2 \times 2}(\mathbb{R}) ; \operatorname{det}(M)=1\right\}
$$

is a 3 -dimensional submanifold of $\operatorname{Mat}_{2 \times 2}(\mathbb{R}) \cong \mathbb{R}^{4}$. Now construct a chart on $S L_{2}(\mathbb{R})$ containing the identity matrix.
7. (Advanced.) Generalize Example 3.8 to show that, for any $k \leq m \leq n$, the Grassmannian $\operatorname{Gr}(k, m)$ sits as a submanifold inside $\operatorname{Gr}(k, n)$.

M4P52 Manifolds, 2016 Problem Sheet 3

1. (a) Let $F=(f, g): \mathbb{R}^{n} \rightarrow \mathbb{R}^{2}$ be a smooth function, let α be a regular value of f, and let (α, β) be a regular value of F. Let $Y=f^{-1}(\alpha)$ and let $Z=F^{-1}(\alpha, \beta)$. Prove that Z is a submanifold of Y.
Now let F be the function:

$$
\begin{aligned}
F: \mathbb{R}^{4} & \rightarrow \mathbb{R}^{2} \\
(x, y, z, w) & \mapsto\left(x^{2}+y^{2}, z^{2}+w^{2}\right)
\end{aligned}
$$

(b) For any $\alpha \in(0,1)$, show that the set $F^{-1}(\alpha, 1-\alpha)$ is a 2-dimensional submanifold of S^{3}.
(c) What do these submanifolds look like? What happens at $\alpha=0$ or 1 ?
2. Let X be the manifold $(\mathbb{R},[\mathcal{C}])$ where $[\mathcal{C}]$ is the non-standard smooth structure from Example 2.25. Describe all the smooth functions from X to \mathbb{R}.
3. Show that a smooth function between two manifolds must be continuous.
$\star 4 \star$. Consider the function:

$$
\begin{aligned}
F: S^{n} & \rightarrow \mathbb{R} \mathbb{P}^{n} \\
\left(x_{0}, \ldots, x_{n}\right) & \mapsto x_{0}: \ldots: x_{n}
\end{aligned}
$$

(a) Prove that F is smooth. (Hint: use the charts on S^{n} from Example 3.21.)
(b) Is F surjective? Is it injective?
5. Fix $n \in \mathbb{Z}$, and consider the function:

$$
\begin{aligned}
F: T^{1} & \rightarrow T^{1} \\
{[t] } & \mapsto[n t]
\end{aligned}
$$

Prove that F is smooth. Describe the level sets of F.
6. (a) Prove Lemma 4.7.
(b) Prove Lemma 4.8

M4P52 Manifolds, 2016 Problem Sheet 4

1. Prove Lemma 4.18.

2. (a) Prove Lemma 4.20.
(b) Formulate and prove a 'dual' statement involving submersions.
3. Suppose $F: X \rightarrow Y$ is a submersion between a manifold of dimension n and a manifold of dimension k.
(a) Show that at any point we can find co-ordinate charts which make F look like the standard projection $\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$.
(b) Deduce that the image of F is an open set in Y.
$\star 4 \star$. (a) Compute the rank of the function

$$
\begin{aligned}
F: T^{2} & \rightarrow \mathbb{R}^{3} \\
{[(s, t)] } & \mapsto(\cos 2 \pi s(2+\cos 2 \pi t), \sin 2 \pi s(2+\cos 2 \pi t), \sin 2 \pi t)
\end{aligned}
$$

at all points in T^{2}. Hint: first consider points where $\cos 2 \pi t \neq 0$.
(b) Consider the level set $Z_{1}=h^{-1}(1) \subset \mathbb{R}^{3}$ of the function h from Example 3.20. Show that F defines a smooth function from T^{2} to Z_{1}. Assuming that this a bijection, prove that it is a diffeomorphism.
5. Let X by the manifold \mathbb{R} equipped with the standard smooth structure, and let Y be the manifold \mathbb{R} equipped with the non-standard smooth structure $[\mathcal{C}]$ from Example 2.25. Prove that X and Y are diffeomorphic.
6. Prove that $\mathbb{R} \mathbb{P}^{1}$ is diffeomorphic to T^{1}.

M4P52 Manifolds, 2016
 Problem Sheet 5

$\star 1 \star$. Let $X=S^{2}$, and let $\left(U_{1}, f_{1}\right),\left(U_{2}, f_{2}\right)$ be the two stereographic projection charts from Example 2.5. Recall that the transition function between these two charts is

$$
\phi_{21}:(x, y) \mapsto \frac{1}{r^{2}}(x, y)
$$

where $r^{2}=x^{2}+y^{2}($ see Example 2.7).
(a) Write down a curve σ in X through the point $(1,0,0)$, such that $\Delta_{f_{1}}:[\sigma] \mapsto(1,0)$.
(b) Compute the Jacobian matrix of ϕ_{21} at the point $(1,0)$, and then use this to find $\Delta_{f_{2}}([\sigma])$.
(c) If we view $T_{(1,0,0)} X$ as a subspace of \mathbb{R}^{3} then what vector does $[\sigma]$ correspond to?
2. Let X, Y and Z be three manifolds, and let $F: X \rightarrow Y$ and $G: Y \rightarrow Z$ be smooth functions. Fix a point $x \in X$. Prove that the chain rule holds, i.e. that

$$
\left.D(G \circ F)\right|_{x}=\left.\left.D G\right|_{F(x)} \circ D F\right|_{x}
$$

(a) by picking co-ordinate charts.
(b) without picking co-ordinate charts.
3. Let $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function $h(x, y)=x y$, and for any $\alpha \in \mathbb{R}$ let Z_{α} denote the corresponding level set of h.
(a) For $\alpha \neq 0$, find the tangent space to any point in Z_{α} as a subspace of \mathbb{R}^{2}.
(b) For any point $(x, y) \in Z_{0}$ find the kernel of $\left.D h\right|_{(x, y)}$.
4. Let X be a manifold of dimension n, and let $h, g: X \rightarrow \mathbb{R}$ be two smooth functions. Let α and β be regular values of h and g respectively, and let Z_{α} and W_{β} be the corresponding level sets. Suppose that, for all points $x \in Z_{\alpha} \cap W_{\beta}$, we have:

$$
\operatorname{dim}\left(T_{x} Z_{\alpha} \cap T_{x} W_{\beta}\right)=n-2
$$

(a) Show that $Z_{\alpha} \cap W_{\beta}$ is an $(n-2)$-dimensional submanifold of Z.

Now generalize this result by:
(b) Replacing h by a smooth function $h: X \rightarrow \mathbb{R}^{m}$ and g by a smooth function $g: X \rightarrow \mathbb{R}^{k}$.
(c) Replacing Z_{α} and W_{β} by arbitrary submanifolds of X. Hint: the question is local!
5. Let $Z \subset \mathbb{R}^{n}$ be a 1 -dimensional submanifold.
(a) Explain why looking at the tangent space to points in z defines a function:

$$
F: Z \rightarrow \mathbb{R P}^{n-1}
$$

(b) Prove that this function F is smooth. Hint: pick a chart on Z and consider the inclusion $\iota: Z \hookrightarrow \mathbb{R}^{n}$.
(c) Prove that the subset $Z_{2} \subset \mathbb{R}^{2}$ described at the start of Section 3.1 is not a submanifold.

M4P52 Manifolds, 2016 Problem Sheet 6

For questions 1 and 2 we use Definition 5.17 of a 'tangent vector'. We let X be an n-dimensional manifold, and let \mathcal{A}_{x} denote the set of all charts containing a fixed point $x \in X$.

1. Let $h: X \rightarrow \mathbb{R}$ be a smooth function. For any chart $(U, f) \in \mathcal{A}_{x}$, we can view the Jacobian matrix

$$
\left.D\left(h \circ f^{-1}\right)\right|_{f(x)}: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

as a vector in \mathbb{R}^{n}. This defines a function from \mathcal{A}_{x} to \mathbb{R}^{n}. Is it a tangent vector?

Now let Y be a second manifold, of dimension k, and for $y \in Y$ let \mathcal{B}_{y} denote the set of all charts containing y.
2. Let $F: X \rightarrow Y$ be a smooth function, and set $y=F(x)$. Let $\delta: \mathcal{A}_{x} \rightarrow \mathbb{R}^{n}$ be a tangent vector to x.
(a) Fix a chart $(U, f) \in \mathcal{A}_{x}$ and let $\delta_{f} \in \mathbb{R}^{n}$ be the value of δ in this chart. Show that the function

$$
\begin{aligned}
\left.D F\right|_{x}(\delta): \mathcal{B}_{y} & \rightarrow \mathbb{R}^{k} \\
(V, g) & \left.\mapsto D\left(g \circ F \circ f^{-1}\right)\right|_{f(x)}\left(\delta_{f}\right)
\end{aligned}
$$

is a tangent vector to y.
(b) Show that $\left.D F\right|_{x}(\delta)$ does not depend on our choice of chart (U, f).
(c) Show that this construction agrees with our earlier definition of the derivative $\left.D F\right|_{x}$.
(Continued on next page.)
$\star 3 \star$. (a) Let ξ be the vector field on S^{1} defined by

$$
\left.\xi\right|_{(x, y)}=(-y, x)^{\top} \in T_{(x, y)} S^{1} \subset \mathbb{R}^{2}
$$

(from Example 6.2), and let

$$
f_{1}:(x, y) \mapsto \tilde{x}=\frac{x}{1+y}
$$

be the stereographic projection co-ordinates from Example 2.4. Find the function

$$
\widetilde{\xi}_{1}: \mathbb{R} \rightarrow \mathbb{R}
$$

which is the expression for ξ in this chart. Hint: f_{1} can be extended to a function on an open set in \mathbb{R}^{2}. Also note the identity:

$$
1+\tilde{x}^{2}=2 /(1+y)
$$

(b) Now find the expression for ξ in the co-ordinates $f_{2}:(x, y) \mapsto \frac{x}{1-y}$ using the transformation law for vector fields.
4. For any $s \in \mathbb{R}$, consider the linear map:

$$
\widehat{G}_{s}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos s & \sin s \\
0 & -\sin s & \cos s
\end{array}\right): \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}
$$

(a) Prove that \widehat{G}_{s} induces a diffeomorphism $G_{s}: S^{2} \rightarrow S^{2}$, and show that this defines a flow G on S^{2}.
(b) Find the associated vector field ξ^{G}, and find the points where ξ^{G} is zero.
5. (a) Show that a vector field on T^{2} is the same thing as a smooth function $\widehat{\xi}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ satisfying

$$
\widehat{\xi}(x+n, y+m)=\widehat{\xi}(x, y)
$$

for all $n, m \in \mathbb{Z}$ and all points $(x, y) \in \mathbb{R}^{2}$.
(b) Suppose $\widehat{\xi}$ is the constant function

$$
\widehat{\xi}:(x, y) \mapsto(u, v)
$$

for some fixed $(u, v) \in \mathbb{R}^{2}$. Find a flow G on T^{2} such that ξ^{G} is the vector field corresponding to $\widehat{\xi}$.

M4P52 Manifolds, 2016
 Problem Sheet 7

$\star 1 \star$. (a) Let $F: X \rightarrow Y$ be a smooth function between two manifolds. Fix $x \in X$ and let $y=F(x)$. Show that the linear map

$$
\begin{aligned}
C^{\infty}(Y) & \rightarrow C^{\infty}(X) \\
h & \mapsto h \circ F
\end{aligned}
$$

induces a well-defined map from $T_{y}^{\star} Y$ to $T_{x}^{\star} X$, and that the rank of this map equals the rank of F at x.
(b) Let Z be a submanifold of \mathbb{R}^{n}. Deduce that for any $x \in Z$ there is a natural surjection $\mathbb{R}^{n} \rightarrow T_{x}^{\star} Z$.
2. (a) Let $Z \subset \mathbb{R}^{n}$ be the level set of a function $h \in C^{\infty}\left(\mathbb{R}^{n}\right)$ at a regular value, and fix a point $x \in Z$. Show that we can identify $T_{x}^{\star} Z$ with the quotient of \mathbb{R}^{n} by the subspace spanned by the vector $\left.D h\right|_{x} ^{\top} \in \mathbb{R}^{n}$.
(b) Use this to get an explicit description of the cotangent spaces to S^{n}.
(c) Generalize part (a) by replacing h with a smooth function $h: \mathbb{R}^{n} \rightarrow$ \mathbb{R}^{k}.
(d) Now suppose $Z \subset X$ is the level set of a smooth function $H: X \rightarrow Y$ at a regular value. What can you say about the cotangent spaces to points in Z ?
3. Let σ be the curve through $(1,0,0) \in S^{2}$ defined by

$$
\begin{aligned}
& \sigma:(-\epsilon, \epsilon) \rightarrow S^{2} \\
& \quad t \mapsto\left(\cos t, \frac{1}{\sqrt{2}} \sin t, \frac{1}{\sqrt{2}} \sin t\right)
\end{aligned}
$$

and let $\partial_{\sigma} \in \operatorname{Der}_{(1,0,0)}\left(S^{2}\right)$ be the corresponding derivation at $(1,0,0)$.
(a) Consider the chart with domain $U=S^{2} \cap\{x>0\}$ and co-ordinates:

$$
f:(x, y, z) \mapsto(y, z)
$$

Write down explicitly the partial derivative operator in $\operatorname{Der}_{(0,0)}(\tilde{U})$ that corresponds to ∂_{σ}.
(b) Let $h \in C^{\infty}\left(S^{2}\right)$ be the function:

$$
h:(x, y, z) \mapsto \frac{\tan ^{-1}\left(\sinh ^{-1} x\right)}{\log (\cosh (x)+2)}+x y^{3}+x^{2} z
$$

Compute $\partial_{\sigma} h$. Hint: think before you calculate.

Continued on next page.
4. In this exercise we'll prove Proposition 7.8 'in reverse'. Fix a point x in a manifold X.
(a) For any $h \in C^{\infty}(X)$, define a function:

$$
\begin{aligned}
T_{x} X & \rightarrow \mathbb{R} \\
{[\sigma] } & \mapsto \partial_{\sigma}(h)
\end{aligned}
$$

Show that this function is well-defined and linear.
(b) Show that the resulting function

$$
C^{\infty}(X) \rightarrow\left(T_{x} X\right)^{\star}
$$

is linear, and induces a well-defined injection $T_{x}^{\star} X \rightarrow\left(T_{x} X\right)^{\star}$.
(c) Prove that this is actually an isomorphism $T_{x}^{\star} X \xrightarrow{\sim}\left(T_{x} X\right)^{\star}$. You may use other results from the course at this point.
(d) Convince yourself that this is the dual to the isomorphism in Proposition 7.8.
5. Let $x \in X$ be a point in a manifold. Let $\mathfrak{d}: C^{\infty}(X) \rightarrow \mathbb{R}$ be a linear map which vanishes on the subspace $R_{x}(X)$. Show that \mathfrak{d} is a derivation at x.
6. Let $F: X \rightarrow Y$ be a smooth function, fix $x \in X$, and let $y=F(x)$. Let

$$
\left.D F\right|_{x}: \operatorname{Der}_{x}(X) \rightarrow \operatorname{Der}_{y}(Y)
$$

be the dual linear map to the map defined in question 1(a).
(a) If σ is a curve through x, what does the operator $\left.D F\right|_{x}\left(\partial_{\sigma}\right)$ do to a function $h \in C^{\infty}(Y)$? Show that $\left.D F\right|_{x}$ agrees with our previous definitions of the derivative.
(b) Using this definition, prove that the chain rule holds.

M4P52 Manifolds, 2016
 Problem Sheet 8

$\star 1 \star$. (a) Let X be the open ball $B_{1}((0,0)) \subset \mathbb{R}^{2}$, and define a vector field $\tilde{\xi}$ on X by:

$$
\tilde{\xi}:(x, y) \mapsto\left(0, \sqrt{1-x^{2}-y^{2}}\right)
$$

Viewing $\tilde{\xi}$ as operator in $\operatorname{Der}(X)$, evaluate it on the function $x^{2}+y^{2} \in C^{\infty}(X)$.
(b) Let ξ be the vector field on S^{2} defined by:

$$
\xi:(x, y, z) \mapsto(0, z,-y)
$$

Let $h \in C^{\infty}\left(S^{2}\right)$ be the function $h:(x, y, z) \mapsto z^{2}$. Find a function $g \in C^{\infty}\left(\mathbb{R}^{3}\right)$ such that $\xi(h)=\left.g\right|_{S^{2}}$.
(c) What's the connection between parts (a) and (b)? State the relationship clearly, but you don't need to provide a detailed justification.
2. (a) Prove that $C^{\infty}\left(\mathbb{R P}^{n-1}\right)$ can be identified with the space of all smooth functions

$$
h: \mathbb{R}^{n} \backslash 0 \rightarrow \mathbb{R}
$$

which obey the condition:

$$
h(\lambda x)=h(x), \quad \forall \lambda \in \mathbb{R} \backslash 0, x \in \mathbb{R}^{n} \backslash 0
$$

(b) Let x_{1}, \ldots, x_{n} be the standard co-ordinates on \mathbb{R}^{n}. Show that for any $i, j \in[1, n]$ the operator $x_{i} \frac{\partial}{\partial x_{j}}$ defines a vector field on $\mathbb{R} \mathbb{P}^{n-1}$. Deduce that there is a linear map

$$
\operatorname{Mat}_{n \times n}(\mathbb{R}) \longrightarrow \operatorname{Der}\left(\mathbb{R} \mathbb{P}^{n-1}\right)
$$

but show that this is not an injection.
(c) (Advanced) See how much of this you can generalize to the Grassmannian $\operatorname{Gr}(k, n)$.
3. (a) Let $h \in C^{\infty}\left(\mathbb{R}^{2}\right)$ be the function $h(x, y)=x^{2} y$. Write down the one-form $d h$.
(b) Let α_{+}and α_{-}be the one-forms

$$
\alpha_{ \pm}=\cos y d x \pm x \sin y d y
$$

on \mathbb{R}^{2}. Does there exist a function $h_{+} \in C^{\infty}\left(\mathbb{R}^{2}\right)$ such that $d h_{+}=\alpha_{+}$? Does there exist a function $h_{-} \in C^{\infty}\left(\mathbb{R}^{2}\right)$ such that $d h_{-}=\alpha_{-}$?
4. In Example 8.5, verify that $d \tilde{h}_{1}$ transforms into $d \tilde{h}_{2}$ under the transition function between the two charts.
5. If we have a vector field ξ and a one-form α on a manifold X, show that we can combine them to get a function $g_{\xi, \alpha} \in C^{\infty}(X)$. If $\alpha=d h$ for some $h \in C^{\infty}(X)$, find another description of $g_{\xi, \alpha}$.

M4P52 Manifolds, 2016 Problem Sheet 9

1. Consider the chart on S^{n} with domain $U=S^{n} \cap\left\{x_{0}>0\right\}$ and co-ordinates:

$$
f:\left(x_{0}, x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{n}\right)
$$

(a) Let $\iota: S^{n} \hookrightarrow \mathbb{R}^{n+1}$ be the inclusion. For each $i \in[0, n]$, find the expression for the one-form $\iota^{*} d x_{i}$ in the chart (U, f).
(b) Use (a) to find the expression of the one-form $\iota^{*}\left(x_{0} d x_{0}+\ldots+x_{n} d x_{n}\right)$ in the chart (U, f). Now find another way to get to this answer.
2. Let α be the one-form

$$
\alpha=y d x-x d y
$$

on \mathbb{R}^{2}, and let $\iota: S^{1} \hookrightarrow \mathbb{R}^{2}$ be the inclusion map.
(a) Show that $\iota^{*} \alpha$ is not zero at any point.
(b) Is there a function $h \in C^{\infty}\left(S^{1}\right)$ such that $\iota^{*} \alpha=d h$?
3. Convince yourself that, for a general smooth function $F: X \rightarrow Y$, it is not possible to 'pull-back' a vector field along F. Now find a hypothesis on F that makes it possible.
4. Let V be a four-dimensional vector space with a basis $e_{1}, e_{2}, e_{3}, e_{4}$.
(a) Write down a basis for $\wedge^{3} V^{\star}$.
(b) If $c \in \wedge^{2} V^{\star}$ is decomposable, show that $c \wedge c=0$. Find an element of $\wedge^{2} V^{\star}$ that is not decomposable.
5. Let V be a vector space, let $c \in V^{\star}$ and let $\hat{c} \in \wedge^{2} V^{\star}$. For any three vectors $v_{1}, v_{2}, v_{3} \in V$, find an expression for the value of

$$
(c \wedge \hat{c})\left(v_{1}, v_{2}, v_{3}\right) \in \mathbb{R}
$$

Hint: start by assuming that \hat{c} is decomposable. If you have the energy, try this question again for the case that both c and \hat{c} lie in $\Lambda^{2} V^{\star}$.
6. Let $h, g \in C^{\infty}\left(\mathbb{R}^{2}\right)$ be the functions $h(x, y)=x^{2} y$ and $g(x, y)=\sin (x y)$. Find the two-form $d h \wedge d g$.
7. In Example 8.30 we saw that the curl operator $\nabla \times$ on vector fields in 3dimensions can be interpreted as a special case of the exterior derivative d. Find similar interpretations of the gradient ∇ and divergence $\nabla \cdot$ operators. What does Proposition 8.31(i) say in this situation?
8. Let (U, f) be the chart on S^{n} from Question 1 , and let $\tilde{x}_{1}, \ldots, \tilde{x}_{n}$ be the standard co-ordinates on the codomain \tilde{U} of this chart.
(a) Let $\iota: S^{n} \hookrightarrow \mathbb{R}^{n+1}$ be the inclusion map. Find the expression of the n-form $\iota^{*}\left(d x_{0} \wedge d x_{1} \wedge \ldots \wedge d x_{n-1}\right)$ in the chart (U, f).
(b) For the $(n-1)$-form

$$
\tilde{\alpha}=\left(1-\sum_{i=1}^{n} \tilde{x}_{i}^{2}\right)^{\frac{1}{2}} d \tilde{x}_{1} \wedge \ldots \wedge d \tilde{x}_{n-1} \in \Omega^{1}(\tilde{U})
$$

compute $d \tilde{\alpha}$. Explain the relationship to your answer for (a).
9. (a) Let V be a vector space. Given $c \in \wedge^{p} V^{\star}$, and $v \in V$, show that they can be combined to get an element $i_{v} c \in \wedge^{p-1} V^{\star}$. Now choose a basis for V, and describe $i_{v} c$ in the case that both v and c are basis elements.
(b) Let X be a manifold. Deduce that if we are given $\alpha \in \Omega^{p}(X)$ and ξ a vector field on X, we can combine them to get a $(p-1)$-form $i_{\xi} \alpha$. Prove that if α and ξ are smooth then $i_{\xi} \alpha$ is also smooth.
10. (a) Show that a smooth function $F: X \rightarrow Y$ induces a linear map

$$
F^{\star}: H_{d R}^{p}(Y) \rightarrow H_{d R}^{p}(X)
$$

for any p.
(b) Show that the wedge product

$$
\wedge: H_{d R}^{p}(X) \times H_{d R}^{q}(X) \rightarrow H_{d R}^{p+q}(X)
$$

is well-defined, for any p, q.
(c) What is the topological meaning of the number $\operatorname{dim} H_{d R}^{0}(X)$? Hint: what kind of function $h \in C^{\infty}(X)$ satisfies $d h=0$?

M4P52 Manifolds, 2016 Mastery Material Problem Sheet

1. Let x, y, z be the standard co-ordinates on \mathbb{R}^{3}. Let Z be the level set at a regular value of a function $h \in C^{\infty}\left(\mathbb{R}^{3}\right)$, and let $\iota: Z \hookrightarrow \mathbb{R}^{3}$ denote the inclusion. Let ω be the two-form:

$$
\omega=d x \wedge d y \in \Omega^{2}\left(\mathbb{R}^{3}\right)
$$

Show that if $\frac{\partial h}{\partial z} \neq 0$ at all points in Z then $\iota^{*} \omega$ is a volume form on Z.
2. Let X be a compact oriented n-dimensional manifold. For any $\alpha \in \Omega^{p}(X)$ and $\beta \in \Omega^{n-p-1}(X)$ show that:

$$
\int_{X} d \alpha \wedge \beta= \pm \int_{X} \alpha \wedge d \beta
$$

3. For any manifold X, let $\mathcal{O} r(X)$ denote the set of all possible orientations on X. Let X and Y be two n-dimensional manifolds.
(a) Let $F: X \rightarrow Y$ be a smooth function which has rank n at all points. If ω is a volume form on Y, show that $F^{\star} \omega$ is a volume form on X. Show that the function

$$
\begin{aligned}
F^{\star}: \mathcal{O} r(Y) & \rightarrow \mathcal{O} r(X) \\
{[\omega] } & \mapsto\left[F^{\star} \omega\right]
\end{aligned}
$$

is well-defined.
(b) Suppose that that X is connected and orientable. Show that $\mathcal{O} r(X)$ contains exactly two elements.
Deduce that a diffeomorphism $G: X \rightarrow X$ induces a bijection from $\mathcal{O} r(X)$ to $\mathcal{O} r(X)$ which is either the identity, or a transposition.

In the first case we say that G is orientation-preserving, and in the second case we say that G is orientation-reversing.
(c) Suppose X is connected and orientable, and let $G: X \rightarrow X$ be an orientation-reversing diffeomorphism. Now suppose that $q: X \rightarrow Y$ is a smooth function having rank n at all points, satisfying:

$$
q \circ G=q
$$

Prove that Y cannot be orientable.
(d) Show that the Klein bottle K (Sheet 1, Q5) is not orientable.
(e) Show that the function

$$
G: x \mapsto-x
$$

is a diffeomorphism from S^{n} to itself.
Now let $\omega_{0}=d x_{1} \wedge \ldots \wedge d x_{n+1}$ be the standard volume form on \mathbb{R}^{n+1}, and let ω^{\prime} be the induced volume form on the submanifold S^{n} (as in Proposition 9.6). Fix the point $p=(0, \ldots, 0,1) \in S^{n}$, and consider the linear map:

$$
\wedge^{n}\left(\left.D G\right|_{p}\right)^{\star}: \wedge^{n} T_{-p}^{\star} S^{n} \rightarrow \wedge^{n} T_{p}^{\star} S^{n}
$$

Show that applying this map to the element $\left.\omega^{\prime}\right|_{-p}$ produces either ω_{p}^{\prime} or $-\omega_{p}^{\prime}$, depending on whether n is odd or even. Hint: consider $T_{ \pm p} S^{n}$ as subspaces of \mathbb{R}^{n+1}.
Deduce that $G: S^{n} \rightarrow S^{n}$ is orientation-preserving iff n is odd.
(f) Show that $\mathbb{R} \mathbb{P}^{n}$ is not orientable if n is even.
4. (a) Prove that a 2-form α on the torus T^{2} is the same thing as 2-form on \mathbb{R}^{2}

$$
\hat{\alpha}=\hat{h}(x, y) d x \wedge d y \in \Omega^{2}\left(\mathbb{R}^{2}\right)
$$

satisfying $\hat{h}(x+n, y+m)=\hat{h}(x, y)$ for all $n, m \in \mathbb{Z}$.
(b) In Example 2.12 we found an atlas on the torus T^{2} with four charts $\left(U_{i}, f_{i}\right), 1 \leq i \leq 4$. Find a volume form ω on T^{2} such that each of these charts is oriented with respect to ω.
(c) Show that there is a partition-of-unity on T^{2} consisting of four functions $\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}$ such that each φ_{i} is only non-zero inside the chart U_{i}. Hint: it can be constructed from the partition-of-unity on T^{1} found in Example 9.17.
(d) Pick $\alpha \in \Omega^{2}\left(T^{2}\right)$, and let $\hat{\alpha}=\hat{h} d x \wedge d y$ be the corresponding periodic two-form on \mathbb{R}^{2} as in part (a). Show that

$$
\int_{T^{2}} \alpha=\int_{y=0}^{1} \int_{x=0}^{1} \hat{h}(x, y) d x d y
$$

(using the orientation $[\omega]$ as in part (b)). Now prove that there is no $\beta \in \Omega^{1}\left(T^{2}\right)$ such that $\omega=d \beta$.
5. (a) Let X be a manifold, and let $Z \subset X$ be a k-dimensional submanifold which is compact and oriented. Use Z to construct a linear map from $H_{d R}^{k}(X)$ to \mathbb{R}.
(b) Let α and β be the closed one-forms on T^{2} corresponding to the periodic one-forms $d x$ and $d z$ on \mathbb{R}^{2} (see e.g. Q4, part (a)). Construct two linear maps $a, b \in\left(H_{d R}^{1}\left(T^{2}\right)\right)^{*}$ such that

$$
a([\alpha]) \neq 0, \quad a([\beta])=0, \quad b([\alpha])=0, \quad b([\beta]) \neq 0
$$

and deduce that $H_{d R}^{1}\left(T^{2}\right)$ is at least two-dimensional.

M4P52 Manifolds, 2016 Vector Bundles Problem Sheet

1. Let $F: X \rightarrow Y$ be a smooth function between two manifolds, and define a function

$$
D F: T X \rightarrow T Y
$$

between their tangent bundles by:

$$
D F:(x, v) \rightarrow\left(F(x),\left.D F\right|_{x}(v)\right)
$$

Show that $D F$ is smooth.
2. Let $\pi: E \rightarrow X$ be a vector bundle, let $\xi: X \rightarrow E$ be a section, and let

$$
\Gamma_{\xi}=\left\{\left(x,\left.\xi\right|_{x}\right), x \in X\right\} \subset E
$$

denote the graph of ξ. Show that Γ_{ξ} is a submanifold of E, and that Γ_{ξ} is diffeomorphic to X.
3. Let $\pi: E \rightarrow T^{1}$ be the 'infinite Möbius strip' vector bundle from Example E.5. Show that a section of E is the same thing as a smooth function $\hat{\sigma}: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
\hat{\sigma}(x+1)=-\hat{\sigma}(x)
$$

for all $x \in \mathbb{R}$. Prove that E is not trivial.
4. Prove that T^{n} is parallelizable for any n.
5. Let X be a parallelizable manifold.
(a) Prove that $T^{\star} X$ is trivial. (Hint: dual bases.)
(b) Now prove that $\wedge^{p} T^{\star} X$ is trivial, for all p.

