1. Let X and Y be n-dimensional topological manifolds. Prove that the disjoint union $X \sqcup Y$ is an n-dimensional topological manifold.

Is $S^1 \sqcup S^2$ a topological manifold?

- 2. Recall that the *discrete topology* on a set X is given by declaring that every 1-point set $\{x\} \subset X$ is open (and hence every subset of X is open). Prove that a topological space X is a topological manifold of dimension zero iff X has the discrete topology.
- *3*. Let $X = S^1$, and let (U_1, f_1) and (U_2, f_2) be the two 'stereographic projection' co-ordinate charts described in Example 2.4. Define a new co-ordinate chart (U_0, f_0) by

$$U_0 = S^1 \cap \{y < 0\},$$
 $U_0 = (-1, 1) \subset \mathbb{R}$

$$f_0: U_0 \xrightarrow{\sim} \tilde{U}_0$$
$$(x, y) \mapsto x$$

- (a) Write down the transition functions $\phi_{10}, \phi_{01}, \phi_{20}$ and ϕ_{02} , including their domains and codomains.
- (b) Is (U_0, f_0) compatible with the atlas $\{(U_1, f_1), (U_2, f_2)\}$?
- 4. Prove Lemma 2.15.
- 5. Define an equivalence relation on \mathbb{R}^2 by

$$(x,y) \sim (x+n,(-1)^n y+m), \forall n,m \in \mathbb{Z}$$

(these are the orbits of a group action generated by a vertical translation and a horizontal glide reflection). Let K be the topological space:

$$K = \mathbb{R}^2 / \sim$$

- (a) Find a smooth atlas on K. Hint: copy Example 2.12.
- (b) What does K look like?
- 6. Prove Corollary 2.20.
- 7. Let $f : \mathbb{R} \to \mathbb{R}$ be the function $f : x \mapsto x^3$. Is (\mathbb{R}, f) a co-ordinate chart on \mathbb{R} ? Is it compatible with the standard smooth structure on \mathbb{R} ?
- 8. Let $q : \mathbb{R}^2 \to T^2$ be the quotient map from Example 2.12. Let $\tilde{U} \subset \mathbb{R}^2$ be an open set such that $q|_{\tilde{U}}$ is injective, and let $U = q(\tilde{U})$.
 - (a) Prove that $(q|_{\tilde{U}})^{-1}: U \to \tilde{U}$ is a co-ordinate chart on T^2 .
 - (b) Prove that this chart is compatible with the smooth structure from Example 2.12.

- 1. Complete the proof of Proposition 2.26 by proving the two statements asserted in the final sentence.
- 2. Let X be any manifold, and let x be a point in X. Show that the subset $Z = \{x\}$ is a submanifold of X.
- 3. Let X be the 2-torus $T^2 = \mathbb{R}^2 / \mathbb{Z}^2$. Let $Z \subset X$ be the subset:

$$Z = \{ [(x,y)] \in X ; y = \frac{1}{3}\sin(2\pi x) + m, \text{ for some } m \in \mathbb{Z} \}$$

Show that Z is a submanifold of X.

 $\star 3\star$. Let $g: \mathbb{R}^n \to \mathbb{R}$ be a smooth function, and let

$$Z = \{(x, g(x)) ; x \in \mathbb{R}^n\} \subset \mathbb{R}^{n+1}$$

be the graph of g. Prove that Z is a submanifold of \mathbb{R}^{n+1} ,

- (a) without using Proposition 3.16,
- (b) using Proposition 3.16.
- 4. Find a function $h : \mathbb{R}^n \to \mathbb{R}^k$ having a critical value $\alpha \in \mathbb{R}^k$ such that the level set $h^{-1}(\alpha) \subset \mathbb{R}^k$ is a submanifold of codimension k.
- 5. Let $Z = h^{-1}(1) \subset \mathbb{R}^3$ be the torus from Example 3.22. Following the procedure from that example and Example 3.21, construct a chart on Z containing the point (3, 0, 0).
- 6. Show that the group

$$SL_2(\mathbb{R}) = \{ M \in \operatorname{Mat}_{2 \times 2}(\mathbb{R}) ; \det(M) = 1 \}$$

is a 3-dimensional submanifold of $\operatorname{Mat}_{2\times 2}(\mathbb{R}) \cong \mathbb{R}^4$. Now construct a chart on $SL_2(\mathbb{R})$ containing the identity matrix.

7. (Advanced.) Generalize Example 3.8 to show that, for any $k \leq m \leq n$, the Grassmannian $\operatorname{Gr}(k,m)$ sits as a submanifold inside $\operatorname{Gr}(k,n)$.

1. (a) Let $F = (f,g) : \mathbb{R}^n \to \mathbb{R}^2$ be a smooth function, let α be a regular value of f, and let (α, β) be a regular value of F. Let $Y = f^{-1}(\alpha)$ and let $Z = F^{-1}(\alpha, \beta)$. Prove that Z is a submanifold of Y.

Now let F be the function:

$$F: \mathbb{R}^4 \to \mathbb{R}^2$$
$$(x, y, z, w) \mapsto (x^2 + y^2, \ z^2 + w^2)$$

- (b) For any $\alpha \in (0, 1)$, show that the set $F^{-1}(\alpha, 1-\alpha)$ is a 2-dimensional submanifold of S^3 .
- (c) What do these submanifolds look like? What happens at $\alpha = 0$ or 1?
- 2. Let X be the manifold $(\mathbb{R}, [\mathcal{C}])$ where $[\mathcal{C}]$ is the non-standard smooth structure from Example 2.25. Describe all the smooth functions from X to \mathbb{R} .
- 3. Show that a smooth function between two manifolds must be continuous.
- $\star 4\star$. Consider the function:

$$F: S^n \to \mathbb{RP}^n$$
$$(x_0, ..., x_n) \mapsto x_0 : ... : x_n$$

- (a) Prove that F is smooth. (Hint: use the charts on S^n from Example 3.21.)
- (b) Is F surjective? Is it injective?
- 5. Fix $n \in \mathbb{Z}$, and consider the function:

$$F: T^1 \to T^1$$
$$[t] \mapsto [nt]$$

Prove that F is smooth. Describe the level sets of F.

- 6. (a) Prove Lemma 4.7.
 - (b) Prove Lemma 4.8.

- 1. Prove Lemma 4.18.
- 2. (a) Prove Lemma 4.20.
 - (b) Formulate and prove a 'dual' statement involving submersions.
- 3. Suppose $F: X \to Y$ is a submersion between a manifold of dimension n and a manifold of dimension k.
 - (a) Show that at any point we can find co-ordinate charts which make F look like the standard projection $\pi : \mathbb{R}^n \to \mathbb{R}^k$.
 - (b) Deduce that the image of F is an open set in Y.
- $\star 4\star$. (a) Compute the rank of the function

 $F: T^2 \to \mathbb{R}^3$ $[(s,t)] \mapsto \left(\cos 2\pi s(2+\cos 2\pi t), \sin 2\pi s(2+\cos 2\pi t), \sin 2\pi t\right)$

at all points in T^2 . *Hint: first consider points where* $\cos 2\pi t \neq 0$.

- (b) Consider the level set $Z_1 = h^{-1}(1) \subset \mathbb{R}^3$ of the function h from Example 3.20. Show that F defines a smooth function from T^2 to Z_1 . Assuming that this a bijection, prove that it is a diffeomorphism.
- 5. Let X by the manifold \mathbb{R} equipped with the standard smooth structure, and let Y be the manifold \mathbb{R} equipped with the non-standard smooth structure $[\mathcal{C}]$ from Example 2.25. Prove that X and Y are diffeomorphic.
- 6. Prove that \mathbb{RP}^1 is diffeomorphic to T^1 .

1. Let $X = S^2$, and let $(U_1, f_1), (U_2, f_2)$ be the two stereographic projection charts from Example 2.5. Recall that the transition function between these two charts is

$$\phi_{21}: (x,y) \mapsto \frac{1}{r^2}(x,y)$$

where $r^2 = x^2 + y^2$ (see Example 2.7).

- (a) Write down a curve σ in X through the point (1,0,0), such that $\Delta_{f_1} : [\sigma] \mapsto (1,0)$.
- (b) Compute the Jacobian matrix of ϕ_{21} at the point (1,0), and then use this to find $\Delta_{f_2}([\sigma])$.
- (c) If we view $T_{(1,0,0)}X$ as a subspace of \mathbb{R}^3 then what vector does $[\sigma]$ correspond to?
- 2. Let X, Y and Z be three manifolds, and let $F : X \to Y$ and $G : Y \to Z$ be smooth functions. Fix a point $x \in X$. Prove that the chain rule holds, *i.e.* that

$$D(G \circ F)|_x = DG|_{F(x)} \circ DF|_x$$

- (a) by picking co-ordinate charts.
- (b) without picking co-ordinate charts.
- 3. Let $h : \mathbb{R}^2 \to \mathbb{R}$ be the function h(x, y) = xy, and for any $\alpha \in \mathbb{R}$ let Z_{α} denote the corresponding level set of h.
 - (a) For $\alpha \neq 0$, find the tangent space to any point in Z_{α} as a subspace of \mathbb{R}^2 .
 - (b) For any point $(x, y) \in Z_0$ find the kernel of $Dh|_{(x,y)}$.
- 4. Let X be a manifold of dimension n, and let $h, g: X \to \mathbb{R}$ be two smooth functions. Let α and β be regular values of h and g respectively, and let Z_{α} and W_{β} be the corresponding level sets. Suppose that, for all points $x \in Z_{\alpha} \cap W_{\beta}$, we have:

$$\dim(T_x Z_\alpha \cap T_x W_\beta) = n - 2$$

(a) Show that $Z_{\alpha} \cap W_{\beta}$ is an (n-2)-dimensional submanifold of Z.

Now generalize this result by:

- (b) Replacing h by a smooth function $h: X \to \mathbb{R}^m$ and g by a smooth function $g: X \to \mathbb{R}^k$.
- (c) Replacing Z_{α} and W_{β} by arbitrary submanifolds of X. Hint: the question is local!

5. Let $Z \subset \mathbb{R}^n$ be a 1-dimensional submanifold.

(a) Explain why looking at the tangent space to points in z defines a function:

$$F: Z \to \mathbb{RP}^{n-1}$$

- (b) Prove that this function F is smooth. *Hint: pick a chart on* Z *and consider the inclusion* $\iota: Z \hookrightarrow \mathbb{R}^n$.
- (c) Prove that the subset $Z_2 \subset \mathbb{R}^2$ described at the start of Section 3.1 is not a submanifold.

For questions 1 and 2 we use Definition 5.17 of a 'tangent vector'. We let X be an *n*-dimensional manifold, and let \mathcal{A}_x denote the set of all charts containing a fixed point $x \in X$.

1. Let $h: X \to \mathbb{R}$ be a smooth function. For any chart $(U, f) \in \mathcal{A}_x$, we can view the Jacobian matrix

$$D(h \circ f^{-1})|_{f(x)} : \mathbb{R}^n \to \mathbb{R}$$

as a vector in \mathbb{R}^n . This defines a function from \mathcal{A}_x to \mathbb{R}^n . Is it a tangent vector?

Now let Y be a second manifold, of dimension k, and for $y \in Y$ let \mathcal{B}_y denote the set of all charts containing y.

- 2. Let $F: X \to Y$ be a smooth function, and set y = F(x). Let $\delta: \mathcal{A}_x \to \mathbb{R}^n$ be a tangent vector to x.
 - (a) Fix a chart $(U, f) \in \mathcal{A}_x$ and let $\delta_f \in \mathbb{R}^n$ be the value of δ in this chart. Show that the function

$$DF|_{x}(\delta): \quad \mathcal{B}_{y} \to \mathbb{R}^{k}$$
$$(V,g) \mapsto D(g \circ F \circ f^{-1})|_{f(x)}(\delta_{f})$$

is a tangent vector to y.

- (b) Show that $DF|_x(\delta)$ does not depend on our choice of chart (U, f).
- (c) Show that this construction agrees with our earlier definition of the derivative $DF|_x$.

(Continued on next page.)

3. (a) Let ξ be the vector field on S^1 defined by

$$\xi|_{(x,y)} = (-y,x)^{\top} \in T_{(x,y)}S^1 \subset \mathbb{R}^2$$

(from Example 6.2), and let

$$f_1: (x,y) \mapsto \tilde{x} = \frac{x}{1+y}$$

be the stereographic projection co-ordinates from Example 2.4. Find the function \sim

$$\xi_1 : \mathbb{R} \to \mathbb{R}$$

which is the expression for ξ in this chart. *Hint:* f_1 can be extended to a function on an open set in \mathbb{R}^2 . Also note the identity:

$$1 + \tilde{x}^2 = 2/(1+y)$$

- (b) Now find the expression for ξ in the co-ordinates $f_2: (x, y) \mapsto \frac{x}{1-y}$ using the transformation law for vector fields.
- 4. For any $s \in \mathbb{R}$, consider the linear map:

$$\widehat{G}_s = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos s & \sin s\\ 0 & -\sin s & \cos s \end{pmatrix} : \mathbb{R}^3 \to \mathbb{R}^3$$

- (a) Prove that \widehat{G}_s induces a diffeomorphism $G_s: S^2 \to S^2$, and show that this defines a flow G on S^2 .
- (b) Find the associated vector field $\xi^G,$ and find the points where ξ^G is zero.
- 5. (a) Show that a vector field on T^2 is the same thing as a smooth function $\widehat{\xi}: \mathbb{R}^2 \to \mathbb{R}^2$ satisfying

$$\widehat{\xi}(x+n,y+m) = \widehat{\xi}(x,y)$$

for all $n, m \in \mathbb{Z}$ and all points $(x, y) \in \mathbb{R}^2$.

(b) Suppose $\hat{\xi}$ is the constant function

$$\widehat{\xi}: (x,y) \mapsto (u,v)$$

for some fixed $(u, v) \in \mathbb{R}^2$. Find a flow G on T^2 such that ξ^G is the vector field corresponding to $\hat{\xi}$.

1. (a) Let $F : X \to Y$ be a smooth function between two manifolds. Fix $x \in X$ and let y = F(x). Show that the linear map

$$C^{\infty}(Y) \to C^{\infty}(X)$$
$$h \mapsto h \circ F$$

induces a well-defined map from T_y^*Y to T_x^*X , and that the rank of this map equals the rank of F at x.

- (b) Let Z be a submanifold of \mathbb{R}^n . Deduce that for any $x \in Z$ there is a natural surjection $\mathbb{R}^n \to T_x^* Z$.
- 2. (a) Let $Z \subset \mathbb{R}^n$ be the level set of a function $h \in C^{\infty}(\mathbb{R}^n)$ at a regular value, and fix a point $x \in Z$. Show that we can identify T_x^*Z with the quotient of \mathbb{R}^n by the subspace spanned by the vector $Dh|_x^{\top} \in \mathbb{R}^n$.
 - (b) Use this to get an explicit description of the cotangent spaces to S^n .
 - (c) Generalize part (a) by replacing h with a smooth function $h : \mathbb{R}^n \to \mathbb{R}^k$.
 - (d) Now suppose $Z \subset X$ is the level set of a smooth function $H : X \to Y$ at a regular value. What can you say about the cotangent spaces to points in Z?
- 3. Let σ be the curve through $(1,0,0) \in S^2$ defined by

$$\begin{aligned} \sigma : & (-\epsilon, \epsilon) \to S^2 \\ t \mapsto \left(\cos t, \frac{1}{\sqrt{2}}\sin t, \frac{1}{\sqrt{2}}\sin t\right) \end{aligned}$$

and let $\partial_{\sigma} \in \text{Der}_{(1,0,0)}(S^2)$ be the corresponding derivation at (1,0,0).

(a) Consider the chart with domain $U = S^2 \cap \{x > 0\}$ and co-ordinates:

$$f: (x, y, z) \mapsto (y, z)$$

Write down explicitly the partial derivative operator in $\text{Der}_{(0,0)}(\tilde{U})$ that corresponds to ∂_{σ} .

(b) Let $h \in C^{\infty}(S^2)$ be the function:

$$h: (x, y, z) \mapsto \frac{\tan^{-1}(\sinh^{-1} x)}{\log(\cosh(x) + 2)} + xy^3 + x^2z$$

Compute $\partial_{\sigma}h$. *Hint: think before you calculate.*

Continued on next page.

- 4. In this exercise we'll prove Proposition 7.8 'in reverse'. Fix a point x in a manifold X.
 - (a) For any $h \in C^{\infty}(X)$, define a function:

$$T_x X \to \mathbb{R}$$
$$[\sigma] \mapsto \partial_{\sigma}(h)$$

Show that this function is well-defined and linear.

(b) Show that the resulting function

$$C^{\infty}(X) \to (T_x X)^{\star}$$

is linear, and induces a well-defined injection $T_x^{\star}X \to (T_xX)^{\star}$.

- (c) Prove that this is actually an isomorphism $T_x^*X \xrightarrow{\sim} (T_xX)^*$. You may use other results from the course at this point.
- (d) Convince yourself that this is the dual to the isomorphism in Proposition 7.8.
- 5. Let $x \in X$ be a point in a manifold. Let $\mathfrak{d} : C^{\infty}(X) \to \mathbb{R}$ be a linear map which vanishes on the subspace $R_x(X)$. Show that \mathfrak{d} is a derivation at x.
- 6. Let $F: X \to Y$ be a smooth function, fix $x \in X$, and let y = F(x). Let

$$DF|_x : \operatorname{Der}_x(X) \to \operatorname{Der}_y(Y)$$

be the dual linear map to the map defined in question 1(a).

- (a) If σ is a curve through x, what does the operator $DF|_x(\partial_{\sigma})$ do to a function $h \in C^{\infty}(Y)$? Show that $DF|_x$ agrees with our previous definitions of the derivative.
- (b) Using this definition, prove that the chain rule holds.

1. (a) Let X be the open ball $B_1((0,0)) \subset \mathbb{R}^2$, and define a vector field $\tilde{\xi}$ on X by:

$$\tilde{\xi}: (x,y) \mapsto (0,\sqrt{1-x^2-y^2})$$

Viewing $\tilde{\xi}$ as operator in Der(X), evaluate it on the function $x^2 + y^2 \in C^{\infty}(X)$.

(b) Let ξ be the vector field on S^2 defined by:

$$\xi: (x, y, z) \mapsto (0, z, -y)$$

Let $h \in C^{\infty}(S^2)$ be the function $h: (x, y, z) \mapsto z^2$. Find a function $g \in C^{\infty}(\mathbb{R}^3)$ such that $\xi(h) = g|_{S^2}$.

- (c) What's the connection between parts (a) and (b)? State the relationship clearly, but you don't need to provide a detailed justification.
- 2. (a) Prove that $C^{\infty}(\mathbb{RP}^{n-1})$ can be identified with the space of all smooth functions

$$h:\mathbb{R}^n\setminus 0\to\mathbb{R}$$

which obey the condition:

$$h(\lambda x) = h(x), \quad \forall \lambda \in \mathbb{R} \setminus 0, \ x \in \mathbb{R}^n \setminus 0$$

(b) Let $x_1, ..., x_n$ be the standard co-ordinates on \mathbb{R}^n . Show that for any $i, j \in [1, n]$ the operator $x_i \frac{\partial}{\partial x_j}$ defines a vector field on \mathbb{RP}^{n-1} . Deduce that there is a linear map

$$\operatorname{Mat}_{n \times n}(\mathbb{R}) \longrightarrow \operatorname{Der}(\mathbb{R}\mathbb{P}^{n-1})$$

but show that this is not an injection.

- (c) (Advanced) See how much of this you can generalize to the Grassmannian Gr(k, n).
- 3. (a) Let $h \in C^{\infty}(\mathbb{R}^2)$ be the function $h(x, y) = x^2 y$. Write down the one-form dh.
 - (b) Let α_+ and α_- be the one-forms

$$\alpha_{\pm} = \cos y \, dx \pm x \sin y \, dy$$

on \mathbb{R}^2 . Does there exist a function $h_+ \in C^{\infty}(\mathbb{R}^2)$ such that $dh_+ = \alpha_+$? Does there exist a function $h_- \in C^{\infty}(\mathbb{R}^2)$ such that $dh_- = \alpha_-$?

- 4. In Example 8.5, verify that $d\tilde{h}_1$ transforms into $d\tilde{h}_2$ under the transition function between the two charts.
- 5. If we have a vector field ξ and a one-form α on a manifold X, show that we can combine them to get a function $g_{\xi,\alpha} \in C^{\infty}(X)$. If $\alpha = dh$ for some $h \in C^{\infty}(X)$, find another description of $g_{\xi,\alpha}$.

1. Consider the chart on S^n with domain $U = S^n \cap \{x_0 > 0\}$ and co-ordinates:

 $f:(x_0, x_1, ..., x_n) \mapsto (x_1, ..., x_n)$

- (a) Let $\iota : S^n \hookrightarrow \mathbb{R}^{n+1}$ be the inclusion. For each $i \in [0, n]$, find the expression for the one-form $\iota^* dx_i$ in the chart (U, f).
- (b) Use (a) to find the expression of the one-form $\iota^*(x_0 dx_0 + ... + x_n dx_n)$ in the chart (U, f). Now find another way to get to this answer.
- 2. Let α be the one-form

$$\alpha = y \, dx - x \, dy$$

on \mathbb{R}^2 , and let $\iota: S^1 \hookrightarrow \mathbb{R}^2$ be the inclusion map.

- (a) Show that $\iota^* \alpha$ is not zero at any point.
- (b) Is there a function $h \in C^{\infty}(S^1)$ such that $\iota^* \alpha = dh$?
- 3. Convince yourself that, for a general smooth function $F: X \to Y$, it is not possible to 'pull-back' a vector field along F. Now find a hypothesis on F that makes it possible.
- 4. Let V be a four-dimensional vector space with a basis e_1, e_2, e_3, e_4 .
 - (a) Write down a basis for $\wedge^3 V^{\star}$.
 - (b) If $c \in \wedge^2 V^*$ is decomposable, show that $c \wedge c = 0$. Find an element of $\wedge^2 V^*$ that is not decomposable.
- 5. Let V be a vector space, let $c \in V^*$ and let $\hat{c} \in \wedge^2 V^*$. For any three vectors $v_1, v_2, v_3 \in V$, find an expression for the value of

 $(c \wedge \hat{c})(v_1, v_2, v_3) \in \mathbb{R}$

Hint: start by assuming that \hat{c} *is decomposable.* If you have the energy, try this question again for the case that both c and \hat{c} lie in $\wedge^2 V^*$.

- 6. Let $h, g \in C^{\infty}(\mathbb{R}^2)$ be the functions $h(x, y) = x^2 y$ and $g(x, y) = \sin(xy)$. Find the two-form $dh \wedge dg$.
- 7. In Example 8.30 we saw that the curl operator ∇× on vector fields in 3dimensions can be interpreted as a special case of the exterior derivative d. Find similar interpretations of the gradient ∇ and divergence ∇· operators. What does Proposition 8.31(i) say in this situation?

- 8. Let (U, f) be the chart on S^n from Question 1, and let $\tilde{x}_1, ..., \tilde{x}_n$ be the standard co-ordinates on the codomain \tilde{U} of this chart.
 - (a) Let $\iota: S^n \hookrightarrow \mathbb{R}^{n+1}$ be the inclusion map. Find the expression of the *n*-form $\iota^*(dx_0 \wedge dx_1 \wedge ... \wedge dx_{n-1})$ in the chart (U, f).
 - (b) For the (n-1)-form

$$\tilde{\alpha} = \left(1 - \sum_{i=1}^{n} \tilde{x}_i^2\right)^{\frac{1}{2}} d\tilde{x}_1 \wedge \dots \wedge d\tilde{x}_{n-1} \in \Omega^1(\tilde{U})$$

compute $d\tilde{\alpha}$. Explain the relationship to your answer for (a).

- 9. (a) Let V be a vector space. Given $c \in \wedge^p V^*$, and $v \in V$, show that they can be combined to get an element $i_v c \in \wedge^{p-1} V^*$. Now choose a basis for V, and describe $i_v c$ in the case that both v and c are basis elements.
 - (b) Let X be a manifold. Deduce that if we are given $\alpha \in \Omega^p(X)$ and ξ a vector field on X, we can combine them to get a (p-1)-form $i_{\xi}\alpha$. Prove that if α and ξ are smooth then $i_{\xi}\alpha$ is also smooth.
- 10. (a) Show that a smooth function $F: X \to Y$ induces a linear map

$$F^{\star}: H^p_{dR}(Y) \to H^p_{dR}(X)$$

for any p.

(b) Show that the wedge product

$$\wedge: H^p_{dR}(X) \times H^q_{dR}(X) \to H^{p+q}_{dR}(X)$$

is well-defined, for any p, q.

(c) What is the topological meaning of the number dim $H^0_{dR}(X)$? Hint: what kind of function $h \in C^{\infty}(X)$ satisfies dh = 0?

M4P52 Manifolds, 2016 Mastery Material Problem Sheet

1. Let x, y, z be the standard co-ordinates on \mathbb{R}^3 . Let Z be the level set at a regular value of a function $h \in C^{\infty}(\mathbb{R}^3)$, and let $\iota : Z \hookrightarrow \mathbb{R}^3$ denote the inclusion. Let ω be the two-form:

$$\omega = dx \wedge dy \in \Omega^2(\mathbb{R}^3)$$

Show that if $\frac{\partial h}{\partial z} \neq 0$ at all points in Z then $\iota^* \omega$ is a volume form on Z.

2. Let X be a compact oriented n-dimensional manifold. For any $\alpha \in \Omega^p(X)$ and $\beta \in \Omega^{n-p-1}(X)$ show that:

$$\int_X d\alpha \wedge \beta = \pm \int_X \alpha \wedge d\beta$$

- 3. For any manifold X, let $\mathcal{O}r(X)$ denote the set of all possible orientations on X. Let X and Y be two *n*-dimensional manifolds.
 - (a) Let $F: X \to Y$ be a smooth function which has rank n at all points. If ω is a volume form on Y, show that $F^*\omega$ is a volume form on X. Show that the function

$$F^{\star}: \mathcal{O}r(Y) \to \mathcal{O}r(X)$$
$$[\omega] \mapsto [F^{\star}\omega]$$

is well-defined.

(b) Suppose that that X is connected and orientable. Show that Or(X) contains exactly two elements.

Deduce that a diffeomorphism $G: X \to X$ induces a bijection from $\mathcal{O}r(X)$ to $\mathcal{O}r(X)$ which is either the identity, or a transposition.

In the first case we say that G is *orientation-preserving*, and in the second case we say that G is *orientation-reversing*.

(c) Suppose X is connected and orientable, and let $G : X \to X$ be an orientation-reversing diffeomorphism. Now suppose that $q : X \to Y$ is a smooth function having rank n at all points, satisfying:

$$q \circ G = q$$

Prove that Y cannot be orientable.

- (d) Show that the Klein bottle K (Sheet 1, Q5) is not orientable.
- (e) Show that the function

$$G: x \mapsto -x$$

is a diffeomorphism from S^n to itself.

Now let $\omega_0 = dx_1 \wedge ... \wedge dx_{n+1}$ be the standard volume form on \mathbb{R}^{n+1} , and let ω' be the induced volume form on the submanifold S^n (as in Proposition 9.6). Fix the point $p = (0, ..., 0, 1) \in S^n$, and consider the linear map:

$$\wedge^n (DG|_p)^\star : \wedge^n T^\star_{-n} S^n \to \wedge^n T^\star_n S^n$$

Show that applying this map to the element $\omega'|_{-p}$ produces either ω'_p or $-\omega'_p$, depending on whether *n* is odd or even. *Hint: consider* $T_{\pm p}S^n$ as subspaces of \mathbb{R}^{n+1} .

Deduce that $G: S^n \to S^n$ is orientation-preserving iff n is odd.

- (f) Show that \mathbb{RP}^n is not orientable if n is even.
- 4. (a) Prove that a 2-form α on the torus T^2 is the same thing as 2-form on \mathbb{R}^2

$$\hat{\alpha} = \hat{h}(x, y) \, dx \wedge dy \quad \in \Omega^2(\mathbb{R}^2)$$

satisfying $\hat{h}(x+n, y+m) = \hat{h}(x, y)$ for all $n, m \in \mathbb{Z}$.

- (b) In Example 2.12 we found an atlas on the torus T^2 with four charts $(U_i, f_i), 1 \leq i \leq 4$. Find a volume form ω on T^2 such that each of these charts is oriented with respect to ω .
- (c) Show that there is a partition-of-unity on T² consisting of four functions φ₁, φ₂, φ₃, φ₄ such that each φ_i is only non-zero inside the chart U_i. Hint: it can be constructed from the partition-of-unity on T¹ found in Example 9.17.
- (d) Pick $\alpha \in \Omega^2(T^2)$, and let $\hat{\alpha} = \hat{h} dx \wedge dy$ be the corresponding periodic two-form on \mathbb{R}^2 as in part (a). Show that

$$\int_{T^2} \alpha = \int_{y=0}^1 \int_{x=0}^1 \hat{h}(x,y) \, dx \, dy$$

(using the orientation $[\omega]$ as in part (b)). Now prove that there is no $\beta \in \Omega^1(T^2)$ such that $\omega = d\beta$.

- 5. (a) Let X be a manifold, and let $Z \subset X$ be a k-dimensional submanifold which is compact and oriented. Use Z to construct a linear map from $H^k_{dR}(X)$ to \mathbb{R} .
 - (b) Let α and β be the closed one-forms on T^2 corresponding to the periodic one-forms dx and dz on \mathbb{R}^2 (see e.g. Q4, part (a)). Construct two linear maps $a, b \in (H^1_{dR}(T^2))^*$ such that

$$a([\alpha]) \neq 0, \quad a([\beta]) = 0, \quad b([\alpha]) = 0, \quad b([\beta]) \neq 0$$

and deduce that $H^1_{dR}(T^2)$ is at least two-dimensional.

M4P52 Manifolds, 2016 Vector Bundles Problem Sheet

1. Let $F:X\to Y$ be a smooth function between two manifolds, and define a function

$$DF:TX \to TY$$

between their tangent bundles by:

$$DF: (x,v) \to (F(x), DF|_x(v))$$

Show that DF is smooth.

2. Let $\pi: E \to X$ be a vector bundle, let $\xi: X \to E$ be a section, and let

$$\Gamma_{\xi} = \{ (x, \xi|_x), \ x \in X \} \subset E$$

denote the graph of ξ . Show that Γ_{ξ} is a submanifold of E, and that Γ_{ξ} is diffeomorphic to X.

3. Let $\pi: E \to T^1$ be the 'infinite Möbius strip' vector bundle from Example E.5. Show that a section of E is the same thing as a smooth function $\hat{\sigma}: \mathbb{R} \to \mathbb{R}$ satisfying

$$\hat{\sigma}(x+1) = -\hat{\sigma}(x)$$

for all $x \in \mathbb{R}$. Prove that E is not trivial.

- 4. Prove that T^n is parallelizable for any n.
- 5. Let X be a parallelizable manifold.
 - (a) Prove that $T^{\star}X$ is trivial. (*Hint: dual bases.*)
 - (b) Now prove that $\wedge^p T^*X$ is trivial, for all p.